
1. LVDS to RGB Functional Block

2. RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	3	3.3	3.6	
V _{IH}	High-level input voltage (SHTDN)	2			
V _{IL}	Low-level input voltage (SHTDN)			0.8	
V _{ID}	Magnitude of differential input voltage	0.1		0.6	V
V _{IC} , see Figure 2 and Figure 3	Common-mode input voltage	$\frac{ V_{ID} }{2}$		$2.4 - \frac{ V_{ D} }{2}$	·
				V _{CC} -0.8	
T _A	Operating free-air temperature	-40		85	°C

TIMING REQUIREMENTS

		MIN	NOM	MAX	UNIT
t _c (1)	Input clock period	14.7	t _c	50	ns

⁽¹⁾ t_c is defined as the mean duration of a minimum of 32,000 clock periods.

PARAMETER MEASUREMENT INFORMATION

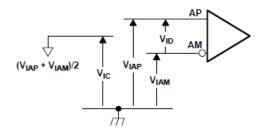


Figure 2. Voltage Definitions

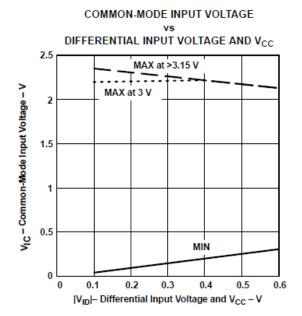
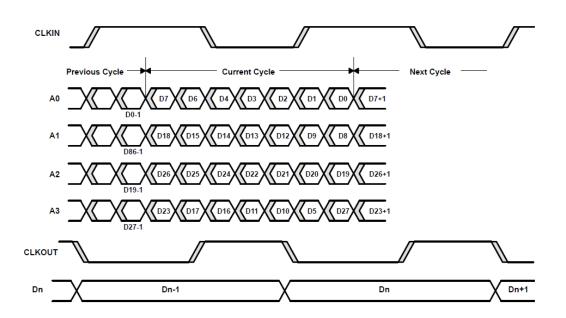



Figure 3. Recommended V_{IC} Versus V_{ID} and V_{CC}

3. Load and Shift Sequences

4. ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
V _{IT+}	Positive-going differential input voltage threshold				100	
V _{IT-}	Negative-going differential input voltage threshold (2)		-100			mV
V _{OH}	High-level output voltage	I _{OH} = -4 mA	2.4			٧
V _{OL}	Low-level output voltage	I _{OL} = 4 mA			0.4	٧
	Quiescent current (average)	Disabled, all inputs open			280	μA
I _{cc}		Enabled, AnP at 1 V and AnM at 1.4 V, t _c = 15.38 ns		62	84	mA
		Enabled, C_L = 8 pF (5 places), Worst-case pattern, see Figure 4, t_c = 15.38 ns		107		mA
I _{IH}	High-level input current (SHTDN)	V _{IH} = V _{CC}			±20	μA
I _{IL}	Low-level input current (SHTDN)	V _{IL} = 0 V			±20	μA
I _{IN}	Input current (A and CLKIN inputs)	0 V ≤ V _I ≤ 2.4 V			±20	μA
I _{OZ}	High-impedance output current	V _O = 0 V or V _{CC}			±10	μА

5. SWITCHING CHARACTERISTICS

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAM	ETER	TEST CONDITIONS		MIN	TYP(1)	MAX	UNIT
t _{su}	Data setup time, D0 through D27 to CLKOUT	C = 0 = F	See Figure 5	4	6		
t _h	Data hold time, CLKOUT to D0 through D27	C _L = 8 pF		4	6		ns
	Receiver input skew margin ⁽¹⁾ , see Figure 6	t _c = 15.38 ns (±0.2%), Input clock jitter <50 ps ⁽²⁾	T _A = 0°C to 85°C	490	800		ps
t _{RSKM}			$T_A = -40$ °C to 0°C	390			
t _d	Delay time, input clock to output clock, see Figure 6	t _c = 15.38 ns (±0.2%)			3.7		ns
$\Delta t_{C(O)}$	Change in output clock period from cycle to cycle ⁽³⁾	t_c = 15.38 + 0.75 sin (2 π 500E3t)±0.05 ns, See Figure 7			±80		
		$t_c = 15.38 + 0.75 \sin (2 \neq 3E6t) \pm 0.05 \text{ ns},$ See Figure 7			±300		ps
t _{en}	Enable time, SHTDN to phase lock	See Figure 8			1		ms
t _{dis}	Disable time, SHTDN to Off state	See Figure 9			400		ns
t _t	Output transition time $(t_r \text{ or } t_f)$	C _L = 8 pF			3		ns
t _w	Output clock pulse duration				$0.43\ t_c$		ns

 ⁽¹⁾ All typical values are V_{CC} = 3.3 V, T_A = 25°C.
(2) The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going input voltage threshold only.

⁽¹⁾ t_{RSKM} is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. It is defined by $\frac{t_c}{14}$ -ts/h. (2) [Input clock jitter] is the magnitude of the change in the input clock period. (3) $\Delta t_{C(O)}$ is the change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.

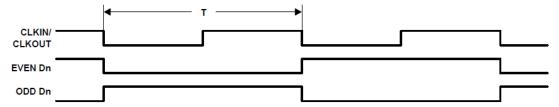


Figure 4. Worst-Case Power Test Pattern

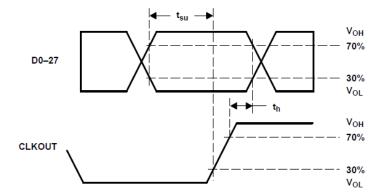


Figure 5. Setup and Hold Time Measurements

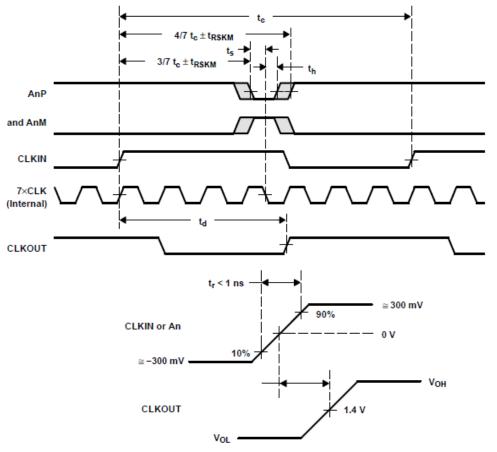


Figure 6. Receiver Input Skew Margin and t_d Definitions

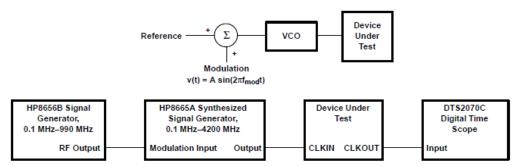


Figure 7. Output Clock Jitter Test Setup

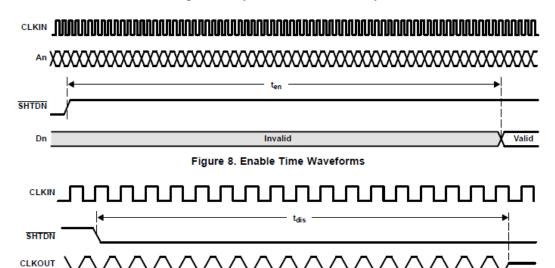


Figure 9. Disable Time Waveforms